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LogDevice

• Log data model built on a strongly consistent Paxos consensus engine
• Carefully chosen variants of Paxos to achieve:
• fault tolerance with fewer copies
• flexible quorums for highly available, high throughput and low latency steady 

state replication
• zero-copy quorum reconfiguration with high availability



Log abstraction



Log data model
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• RPC: thrift, etc…
• require strongest inter-service dependencies (availability, rpc format, etc)

• Log as communication primitive
• supports fan-out and streaming subscription
• messages durably replicated and persisted as ordered log records
• messages can be independently replayed again and again by consumers
• minimal inter-service dependencies

• consumers can be down for hours or days, can still catch up once up via backfills
• load isolation: consumer won’t overwhelm producer service
• easier to handle data format changes

Log is the abstraction for reliable 
communication



Log is the abstraction for distributed state 
replication and distribution



Let's talk Paxos



Concepts & Roles

• Proposers: propose value to be chosen
• value proposed usually on behalf of clients

• Acceptors: agrees and persists decided values
• Learner: a process wish to learn the chosen value
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Flexible Paxos

• Single decree Paxos [1] restriction: Phase 1 and 2 must use a majority
quorum of servers and that any two quorums must intersect

• Flexible Paxos [2]: not all quorums need to intersect. Only need that 
any Phase 1 quorum and any Phase 2 quorum must intersect.
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From Single-Decree Paxos to Multi-Paxos



What is Multi-Paxos

• Scaling Paxos from single value to a growing chain of single-value 
consensus slots
• Practically, we need consensus on multiple values in distributed systems 
• High throughput/Low latency – one phase 1 (leader election) + multiple phase 

2 (replication)
• directly maps to log abstraction: append-only, immutable after consensus



Log is THE abstraction for multi-Paxos
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Multi-Paxos + Flexible Quorums is a game 
changer
• Highly performant steady state via larger acceptor membership and 

smaller replication quorums
• Higher Throughput: pipelined Phase 2 replication with small quorums (e.g., 3 

out of 20)
• Lower Latency: leader picks best 3 out of 20
• Higher write availability: with larger acceptor membership, leader can keep 

writing as long as any 3/20 acceptors are up

• Leader election – less common
• Phase 1 – Leader election with larger quorum (e.g., 18 out of 20) only during 

leader failover
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Question: with a larger Phase 1 quorum (e.g., 
18 out of 20) , is it more difficult (i.e., less 
available) to elect a leader?



Failure domain aware Placement

• Goal: Improving availability and fault tolerance for Phase 1 (leader 
election)

• Solution: Failure domain aware placement
• Reducing size requirement of Phase 1 quorum by enforcing topology 

constrains on Phase 2 quorums during replication
• result: Phase 1 quorum require much smaller number of acceptors during 

correlated failures 



Flexible Quorums example: Grid Quorums

Neither Phase 1 nor Phase 2 quorum need simple majority! 
à Significantly reduced minimal number of acceptors required: floor(M*N/2)+1 -> M+N-1   
à Higher availability and better latency.
à Better data availability and durability in correlated failures 

(a) Basic Paxos: 
Phase 1 and 2 quorum: simple 

majority

(b) Flexible Paxos: 
Phase 1 quorum: one full Availability Zone (AZ)

Phase 2 quorum: a node in each AZ

az1

az2

az3

az4
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Storing and learning consensus results 

• Consensus log records are stored among acceptors in a data striping fashion 
• storage acceptors do not store the full copy of the log
• flexible Paxos enables disjoint small replication quorums over large acceptor membership -

perfect for striping

• Advantages:
• Only f+1 record copies are needed for tolerating f acceptor failures
• Log throughput and capacity not bounded by a single storage acceptor

• Learning the result of consensus: reading the log via streaming
• Acceptors stream their local copy of committed records
• Client reader merges all acceptor record streams using slot (LSN) order
• Single Copy Delivery (SCD) optimization achieves 1X read amplification
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Log Segments and configuration management

• A Log in LogDevice -> A sequence of log segments indexed by monotonically 
increasing epoch
• each segment has its fixed configuration: idea inspired by Stoppable Paxos [5]

• Reconfiguration can happen out-of-band of replication via an auxiliary metadata 
store
• epoch store: stores log segment configuration. back by Zeus (Zookeeper).
• auxiliary metadata store inspired by Vertical Paxos [3]

• Starting a new log segment when:
• Leader (sequencer) fail-over
• reconfiguring replication property and storage acceptor membership

• Similar design also adopted by Delos [4]
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configuration of a log epoch segment

epoch: 1  | SEQ: N0  |  [(region, 2), (node, 3)]  | { N1, N2, N3, N4, N5 }

replication property storage node set
(acceptors)

sequencer 
(leader)

epoch



epoch transition: Sealing and Bridge record

• Starting a new log segment requires first “Sealing” the previous log 
segment. 
• A procedure similar to executing Phase 1 Paxos on a leader election quorum of the 

previous segment
• Once sealing is done, no append request can be successfully ACKed to the sealed log 

epoch segment

• After Sealing, an epoch recovery procedure is performed to:
• learn the last appended record slot in the sealed epoch segment
• place a bridge record immediately after the last record, marking the end of the log 

segment 
• once bridge record is place the log epoch segment becomes immutable (until 

trimmed)



Animation: Leader (sequencer) failure 
scenario
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0. Sequencer in epoch 1 in steady state replication
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1. Sequencer in epoch 1 failed / partitioned 
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2. A new sequencer got elected by failure detector
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3. The new sequencer got its epoch and configuration 
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4. The new sequencer perform Paxos Phase I to SEAL
the Phase 1 (leader election) quorum of storage node 
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Seal Zoom in:
Sequencer in epoch 2 Seals phase 1 quorum of the configuration 
of the previous epoch segment (epoch). 2 (epoch) is used as the 
proposal/ballot number.

sequencer 
epoch 1

epoch 
store

sequencer 
epoch 2

epoch: 1  | SEQ: N0  |  [(region, 2), (node, 3)]  | { N1, N2, N3, N4, N5, N6, N7, N8, N9, N10 }

epoch: 2  | SEQ: N20  |  [(region, 2), (node, 3)]  | { N4, N5, N6, N7, N8, N9, N10, N11 }

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
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4. The sequencer in epoch 2 can start taking new 
appends, but won’t release these records despite 
fully replicated.
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5. At the same time, sequencer in epoch 2, with potential 
other successors, keep running FPaxos (Phase I and II) to 
reach consensus on each slot of epoch 1 in the dirty range, 
and finally placing a bridge record to mark the end of epoch 1 
also using FPaxos. 
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* hole plug is inserted for the LSN slots that are were 
NOT ACKed originally, indicating a benign (non-dataloss) 
gap in the LSN sequence.
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Zero-move, out-of-band reconfiguration

• No data movement with reconfiguration
• start a new log segment only requires a transaction in metadata store

• Out-of-band reconfiguration benefits:
• Allowing different requirements and design choices in data plane vs. metadata plane

• trade-off on durability, availability, throughput, …
• Higher availability in reconfiguration

• Scenario: steady state log replication is stuck (e.g., quorum loss)
• In-band: cannot reconfigure, require manual intervention!
• Out-of-band: reconfiguration by starting a new log segment with a new health acceptor membership

• Low reconfiguration latency
• Reconfiguration latency: TX in metadata store + Sealing the previous segment.  
• No joint consensus. No intermediary transition. Not blocked by data replication.



Highlights

• Superior steady state replication performance
• Smart placement for IaaS compliant failure modelling
• Only requires f+1 copies for tolerating f failures
• 40% less space compared with raft when f = 2

• Low latency, Zero-move reconfiguration
• Log capacity and throughput not bounded by a single node
• High write availability from out-of-band reconfiguration



Takeaways

• Log is THE abstraction for modeling multi-paxos
• LogDevice is a managed service with strong consistency of multi-

paxos and highly performant and efficient with flexible quorums
• Designed to be a reliable, scalable and flexible service



LogDevice: Paxos at Facebook Scale

• LogDevice powering Scribe use case: 
https://engineering.fb.com/data-infrastructure/scribe/
• “the total size of these logs is several petabytes every hour.”
• 2.5 TB/s writes; 7 TB/s reads globally

https://engineering.fb.com/data-infrastructure/scribe/


References

• [1] Paxos Made Simple. Leslie Lamport. 2001
• [2] Flexible Paxos: Quorum intersection revisited. Heidi Howard, Dahlia 

Malkhi, Alexander Spiegelman. 2016
• [3] Vertical Paxos and Primary-Backup Replication. Leslie Lamport, Dahlia 

Malkhi, and Lidong Zhou. 2009
• [4] Delos: Simple, flexible control plane storage. Mahesh Balakrishnan and 

Jason Flinn. 2019
• [5] Stoppable Paxos. Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2008 
• [6] Gossip-Style Failure Detection and Distributed Consensus for Scalable 

Heterogeneous Clusters. Sridharan Ranganathan, et al. 2001

https://engineering.fb.com/data-center-engineering/delos/


Appendix



Leader election and APPEND routing

• Leader election is a plug-in in Multi-Paxos context
• Gossip-based failure detector [6]

• cluster nodes exchange gossips periodically (e.g., every 100ms)
• nodes maintain local cluster state; clients poll cluster state from server;

• placement and routing: weighted consistent hashing
• input: logid, sequencer configuration (map of node -> weights), cluster state
• output: sequencer node id for the log

• “Soft consensus”
• best effort for local views to converge quickly (i.e., 1-3 seconds)
• failing to achieve that won’t affect correctness, but may affect liveness (i.e., 

availability / latency)
• sequencer ping-pong issue
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