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LogDevice

* Log data model built on a strongly consistent Paxos consensus engine

e Carefully chosen variants of Paxos to achieve:
* fault tolerance with fewer copies

* flexible guorums for highly available, high throughput and low latency steady
state replication

* zero-copy quorum reconfiguration with high availability



Log abstraction



Log data model
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Log is the abstraction for reliable
communication

 RPC: thrift, etc...

* require strongest inter-service dependencies (availability, rpc format, etc)

* Log as communication primitive
* supports fan-out and streaming subscription
* messages durably replicated and persisted as ordered log records
* messages can be independently replayed again and again by consumers

* minimal inter-service dependencies
e consumers can be down for hours or days, can still catch up once up via backfills

* load isolation: consumer won’t overwhelm producer service
» easier to handle data format changes



Log is the abstraction for distributed state
replication and distribution
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Let's talk Paxos



Concepts & Roles

* Proposers: propose value to be chosen
* value proposed usually on behalf of clients

* Acceptors: agrees and persists decided values
* Learner: a process wish to learn the chosen value
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Goal: Agree on value "v" for a slot
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Goal: Agree on value "v" for a slot
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Goal: Agree on value "v" for a slot
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Flexible Paxos

* Single decree Paxos [1] restriction: Phase 1 and 2 must use a majority
guorum of servers and that any two quorums must intersect

* Flexible Paxos [2]: not all quorums need to intersect. Only need that
any Phase 1 quorum and any Phase 2 quorum must intersect.
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From Single-Decree Paxos to Multi-Paxos



What is Multi-Paxos

* Scaling Paxos from single value to a growing chain of single-value
consensus slots
* Practically, we need consensus on multiple values in distributed systems

* High throughput/Low latency — one phase 1 (leader election) + multiple phase
2 (replication)
* directly maps to log abstraction: append-only, immutable after consensus



Log is THE abstraction for multi-Paxos
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Multi-Paxos + Flexible Quorums is a game
changer

* Highly performant steady state via larger acceptor membership and
smaller replication quorums

* Higher Throughput: pipelined Phase 2 replication with small quorums (e.g., 3
out of 20)

* Lower Latency: leader picks best 3 out of 20

* Higher write availability: with larger acceptor membership, leader can keep
writing as long as any 3/20 acceptors are up

e Leader election — less common

* Phase 1 — Leader election with larger quorum (e.g., 18 out of 20) only during
leader failover
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Question: with a larger Phase 1 quorum (e.g.,
18 out of 20), is it more difficult (i.e., less
available) to elect a leader?



Failure domain aware Placement

e Goal: Improving availability and fault tolerance for Phase 1 (leader
election)

* Solution: Failure domain aware placement

* Reducing size requirement of Phase 1 quorum by enforcing topology
constrains on Phase 2 quorums during replication

 result: Phase 1 quorum require much smaller number of acceptors during
correlated failures



Flexible Quorums example: Grid Quorums
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(a) Basic Paxos: (b) Flexible Paxos:
Phase 1 and 2 quorum : simple Phase 1 quorum: one full Availability Zone (AZ)
majority Phase 2 quorum: a node in each AZ

Neither Phase 1 nor Phase 2 quorum need simple majority!

- Significantly reduced minimal number of acceptors required: floor(M*N/2)+1 -> M+N-1
— Higher availability and better latency.

— Better data availability and durability in correlated failures
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nodeset size: 18

replication property: (region,2)(az,3)(node,4) failure scenario 1: loss of one entire region
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nodeset size: 18

replication property: (region,2)(az,3)(node,4) o0t failure scenario 2: loss of 2 entire AZs
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nodeset size: 18

replication property: (region,2)(az,3)(node,4) failure scenario 3: loss of any 3 nodes
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Storing and learning consensus results

* Consensus log records are stored among acceptors in a data striping fashion
» storage acceptors do not store the full copy of the log

» flexible Paxos enables disjoint small replication quorums over large acceptor membership -
perfect for striping

e Advantages:

* Only f+1 record copies are needed for tolerating f acceptor failures
* Log throughput and capacity not bounded by a single storage acceptor

* Learning the result of consensus: reading the log via streaming
* Acceptors stream their local copy of committed records
* Client reader merges all acceptor record streams using slot (LSN) order
* Single Copy Delivery (SCD) optimization achieves 1X read amplification
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Log Segments and configuration management

* A Login LogDevice -> A sequence of log segments indexed by monotonically
increasing epoch

* each segment has its fixed configuration: idea inspired by Stoppable Paxos [5]

* Reconfiguration can happen out-of-band of replication via an auxiliary metadata
store

» epoch store: stores log segment configuration. back by Zeus (Zookeeper).
* auxiliary metadata store inspired by Vertical Paxos [3]

e Starting a new log segment when:
* Leader (sequencer) fail-over
* reconfiguring replication property and storage acceptor membership

* Similar design also adopted by Delos [4]
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configuration of a log epoch segment

epoch:1 | SEQ: NO | [(region, 2), (node, 3)] | { N1, N2, N3, N4, N5 }
—— — \ ~ J ~ Y,

epoch sequencer replication property storage node set
(leader) (acceptors)




epoch transition: Sealing and Bridge record

e Starting a new log segment requires first “Sealing” the previous log
segment.
* A procedure similar to executing Phase 1 Paxos on a leader election quorum of the

previous segment
* Once sealing is done, no append request can be successfully ACKed to the sealed log

epoch segment

» After Sealing, an epoch recovery procedure is performed to:
* learn the last appended record slot in the sealed epoch segment
* place a bridge record immediately after the last record, marking the end of the log

segment
* once bridge record is place the log epoch segment becomes immutable (until

trimmed)



Animation: Leader (sequencer) failure
scenario



0. Sequencer in epoch 1 in steady state replication
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1. Sequencer in epoch 1 failed / partitioned
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2. A new sequencer got elected by failure detector
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3. The new sequencer got its epoch and configuration

from the epoch store r‘::;;ig;
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4. The new sequencer perform Paxos Phase | to SEAL
the Phase 1 (leader election) quorum of storage node
set for epoch 1, preventing it from completing new
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Seal Zoom in:

Sequencer in epoch 2 Seals phase 1 quorum of the configuration
of the previous epoch segment (epoch). 2 (epoch) is used as the
proposal/ballot number.

epoch: 1 | SEQ: NO | [(region, 2), (node, 3)] | { N1, N2, N3, N4, N5, N6, N7, N8, N9, N10 }

N9 N10

sequencer

epoch 2

epoch: 2 | SEQ: N20 | [(region, 2), (node, 3)] | { N4, N5, N6, N7, N8, N9, N10, N11 }



4. The sequencer in epoch 2 can start taking new

appends, but won’t release these records despite ,‘;‘,‘;;22;
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5. At the same time, sequencer in epoch 2, with potential
other successors, keep running FPaxos (Phase | and Il) to

reach consensus on each slot of epoch 1 in the dirty range, current
and finally placing a bridge record to mark the end of epoch 1 released h1
. epoc
also using FPaxos. l slots reached consensus tail
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* hole plug is inserted for the LSN slots that are were
NOT ACKed originally, indicating a benign (non-dataloss)
gap in the LSN sequence.



6. The sequencer in epoch 2 can finally release all
records up to the fully replicated prefix of epoch 2.
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/ero-move, out-of-band reconfiguration

* No data movement with reconfiguration
* start a new log segment only requires a transaction in metadata store

* Out-of-band reconfiguration benefits:
* Allowing different requirements and design choices in data plane vs. metadata plane
* trade-off on durability, availability, throughput, ...
* Higher availability in reconfiguration

» Scenario: steady state log replication is stuck (e.g., guorum loss)
* In-band: cannot reconfigure, require manual intervention!
* Qut-of-band: reconfiguration by starting a new log segment with a new health acceptor membership

* Low reconfiguration latency

* Reconfiguration latency: TX in metadata store + Sealing the previous segment.
* No joint consensus. No intermediary transition. Not blocked by data replication.



Highlights

» Superior steady state replication performance
* Smart placement for laaS compliant failure modelling

* Only requires f+1 copies for tolerating f failures
* 40% less space compared with raft when f=2

* Low latency, Zero-move reconfiguration
* Log capacity and throughput not bounded by a single node
* High write availability from out-of-band reconfiguration



Takeaways

* Log is THE abstraction for modeling multi-paxos

* LogDevice is a managed service with strong consistency of multi-
paxos and highly performant and efficient with flexible quorums

* Designed to be a reliable, scalable and flexible service



LogDevice: Paxos at Facebook Scale

* LogDevice powering Scribe use case:
https://engineering.fb.com/data-infrastructure/scribe/
* “the total size of these logs is several petabytes every hour.”
e 2.5 TB/s writes; 7 TB/s reads globally



https://engineering.fb.com/data-infrastructure/scribe/
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Appendix



Leader election and APPEND routing

* Leader election is a plug-in in Multi-Paxos context

* Gossip-based failure detector [6]
 cluster nodes exchange gossips periodically (e.g., every 100ms)
* nodes maintain local cluster state; clients poll cluster state from server;

* placement and routing: weighted consistent hashing
* input: logid, sequencer configuration (map of node -> weights), cluster state
e output: sequencer node id for the log

* “Soft consensus”
* best effort for local views to converge quickly (i.e., 1-3 seconds)

* failing to achieve that won’t affect correctness, but may affect liveness (i.e.,
availability / latency)

* seguencer ping-pong issue
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