LogDevice: the Consensus Story

Xi Xiong, LogDevice SWE

LogDevice

* Log data model built on a strongly consistent Paxos consensus engine

e Carefully chosen variants of Paxos to achieve:
* fault tolerance with fewer copies

* flexible guorums for highly available, high throughput and low latency steady
state replication

* zero-copy quorum reconfiguration with high availability

Log abstraction

Log data model

trim

l writer append

00 /

LSN 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

l l

reader stream reader stream

Log is the abstraction for reliable
communication

 RPC: thrift, etc...

* require strongest inter-service dependencies (availability, rpc format, etc)

* Log as communication primitive
* supports fan-out and streaming subscription
* messages durably replicated and persisted as ordered log records
* messages can be independently replayed again and again by consumers

* minimal inter-service dependencies
e consumers can be down for hours or days, can still catch up once up via backfills

* load isolation: consumer won’t overwhelm producer service
» easier to handle data format changes

Log is the abstraction for distributed state
replication and distribution

>

event
source (e.g.,
mysq|l, scribe,
zdb, logdevice,

2)
—

filtering,

transformation,

resharding...

events

-

LogDevice

\/

mt ld w
gggtdtt

—>
event

streams

/\

Let's talk Paxos

Concepts & Roles

* Proposers: propose value to be chosen
* value proposed usually on behalf of clients

* Acceptors: agrees and persists decided values
* Learner: a process wish to learn the chosen value

received
client
request

Goal: Agree on value "v" for a slot

Proposer

Acceptors

pick
proposal
number n

Goal: Agree on value "v" for a slot

Proposer ‘

Acceptors

Phase 1(a)
Prepare

pick
proposal
number n

Proposer

Goal: Agree on value "v" for a slot

PREPARE(n)

N

AW

Y

Acceptors \

Phase 1(a)
Prepare

Goal: Agree on value "v" for a slot

pick
proposal
number n wait for majority
Proposer
PREPARE(n)
\\\ ///PROMISE(n’,v')
Acceptors \ /

Phase 1(a)
Prepare

Phase 1(b)
Promise

Goal: Agree on value "v" for a slot

v: v’ with largest n”in PROMISEs

pick | received or (in case no v’ received)
proposal . select client picked value
number n wait for majority ' valuev
Proposer | .
|
PREPARE(n) :
l
|
AN /] ‘
|
i
PROMISE(nv) !
N =
|
|
N/ '
|
Acceptors

Phase 1(a) Phase 1(b)
Prepare Promise

Goal: Agree on value "v" for a slot

pick |
proposal | select
number n wait for majority : value v
Proposer E
PREPARE(n) : PROPOSE(n,V)
|
|
AN /] R\
|
i
\\\ /[momssia \\\
N // : A\
|
N/ ‘ \
|
Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

Phase 2(a)
Propose

Goal: Agree on value "v" for a slot

piCk I I
proposal . select valuev
number n wait for majority ' value v wait for majority | chosen

| |
Proposer : : .
PREPARE(n) : PROPOSE(n,v) :
l l
| |
AN /] R \\ N/ ’
| |
| |
\\\ PROMISE(n'v') ! \\\ ACCEPT(n) !
' i
\\ Interséction! !
N/ ’ \ ’
Acceptors ' '

| |
| |
Phase 1(a) Phase 1(b) : Phase 2(a) Phase 2(b) :
Prepare Promise : Propose Accepted :

| |

Goal: Agree on value "v" for a slot

piCk I I
proposal | select | value v
number n wait for majority ' valuev wait for majority ' chosen
Proposer : : .
’ | | Lo,
PREPARE(n) : PROPOSE(n,V) : ... COMMIT(n)
: : “. “".‘ ‘.A_
! ! _ 4
| |
\\\‘ PROMISE(nV’) | \\\‘ ACCEPT(n) !
$ $ ‘—
I s
\\< Interséction! ! ;4
_ 1/ o\ —
I I ,
Acceptors t ' <
| |
| |
Phase 1(a) Phase 1(b) l Phase 2(a) Phase 2(b) : Phase 3
Prepare Promise : Propose Accepted : Commit
| |

(optional)

Flexible Paxos

* Single decree Paxos [1] restriction: Phase 1 and 2 must use a majority
guorum of servers and that any two quorums must intersect

* Flexible Paxos [2]: not all quorums need to intersect. Only need that
any Phase 1 quorum and any Phase 2 quorum must intersect.

| |
pick proposal wait for | select wait for | value v
number n Phase | quorum | valuev Phase Il quorum | chosen
| |
Proposer . .
’ ! : .
PREPARE(n) : PROPOSE(n,v) | . COMMIT(n)
I ““ 3“ ’..'..
8 out of 10 : 3 out of 10 ,
: : “‘.‘ “’.‘ .A_
I I
I I
////// PROMISE(n’,v")! \‘ /ACCEPT(n) |
! | P
W ' '
| |
| |
| |
il ' '
| |
Acceptors '

/-
/ —
Il

I
| |

! Phase 3
Phase 1(a) Phase 1(b) | Phase 2(a) Phase 2(b) c 4
Prepare Promise - Propose Accepted (o::;::clv)

pick proposal
number n

wait for
Phase | quorum

wait for
Phase Il quorum

value v

chosen

| |
| |
| |
| |
| |
Proposer : : .
[[
PREPARE(n) : PROPOSE(n,v) ! “., COMMIT(n)
8 out of 10 : 3 out of 10 |
1 1 A_
I I
PROMISE(n’,v")! CEPT(n) |
1 } L
NN T '
Interséction! I
1| ’ ’
| |
Acceptors | |
i ' '
| |
/] ' '
| |
| |
llf =
|
J '
|
|
|
/ I
|
|
Phase 1(a) Phase 1(b) i Phase 2(a) Phase 2(b) ghase 3t
Prepare Promise : Propose Accepted ommi

(optional)

From Single-Decree Paxos to Multi-Paxos

What is Multi-Paxos

* Scaling Paxos from single value to a growing chain of single-value
consensus slots
* Practically, we need consensus on multiple values in distributed systems

* High throughput/Low latency — one phase 1 (leader election) + multiple phase
2 (replication)
* directly maps to log abstraction: append-only, immutable after consensus

Log is THE abstraction for multi-Paxos

trim

l

Reaching consensus on a newly
allocated slot

writer append

/

LSN 31 32 33

35 36 37 38 39 40 41

l

reader stream

Learn the established consensus
of existing slots

47 48

l

reader stream

Multi-Paxos + Flexible Quorums is a game
changer

* Highly performant steady state via larger acceptor membership and
smaller replication quorums

* Higher Throughput: pipelined Phase 2 replication with small quorums (e.g., 3
out of 20)

* Lower Latency: leader picks best 3 out of 20

* Higher write availability: with larger acceptor membership, leader can keep
writing as long as any 3/20 acceptors are up

e Leader election — less common

* Phase 1 — Leader election with larger quorum (e.g., 18 out of 20) only during
leader failover

rrrrrrrrr

YA
R\

3\
I\ I\
W \Y//
/- | .\
W Y/

\W/i Steady sate i \Y/
\/ | | \/

| o o .
Leader election - Replication @~ ~° Leader election

Question: with a larger Phase 1 quorum (e.g.,
18 out of 20), is it more difficult (i.e., less
available) to elect a leader?

Failure domain aware Placement

e Goal: Improving availability and fault tolerance for Phase 1 (leader
election)

* Solution: Failure domain aware placement

* Reducing size requirement of Phase 1 quorum by enforcing topology
constrains on Phase 2 quorums during replication

 result: Phase 1 quorum require much smaller number of acceptors during
correlated failures

Flexible Quorums example: Grid Quorums

BRI

\\
az3
N
az4
(a) Basic Paxos: (b) Flexible Paxos:
Phase 1 and 2 quorum : simple Phase 1 quorum: one full Availability Zone (AZ)
majority Phase 2 quorum: a node in each AZ

Neither Phase 1 nor Phase 2 quorum need simple majority!

- Significantly reduced minimal number of acceptors required: floor(M*N/2)+1 -> M+N-1
— Higher availability and better latency.

— Better data availability and durability in correlated failures

nodeset size: 18
replication property: (region,2)(az,3)(node,4)

root
replication quorum (copyset):
leader election quorum
(f-majority):
Oregon N. Carolina Texas region

az9 availability

/\ Zone

node

azl az2 az4 azb

NI
LA

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N13 N14 N15

nodeset size: 18

replication property: (region,2)(az,3)(node,4) failure scenario 1: loss of one entire region

root
replication quorum (copyset): -
leader election quorum
(f-majority): .
N. Carolina Texas region

az9 availability
zone

node

nodeset size: 18

replication property: (region,2)(az,3)(node,4) o0t failure scenario 2: loss of 2 entire AZs

replication quorum (copyset): -
leader election quorum
(f-majority): .

Oregon N. Carolina Texas region

2 az3 az4

az5

az az8 az9 availability

zone

node

nodeset size: 18

replication property: (region,2)(az,3)(node,4) failure scenario 3: loss of any 3 nodes

root

replication quorum (copyset): -
leader election quorum
(f-majority): .

Oregon N. Carolina Texas region

N/

az az7 az9 availability

—

Storing and learning consensus results

* Consensus log records are stored among acceptors in a data striping fashion
» storage acceptors do not store the full copy of the log

» flexible Paxos enables disjoint small replication quorums over large acceptor membership -
perfect for striping

e Advantages:

* Only f+1 record copies are needed for tolerating f acceptor failures
* Log throughput and capacity not bounded by a single storage acceptor

* Learning the result of consensus: reading the log via streaming
* Acceptors stream their local copy of committed records
* Client reader merges all acceptor record streams using slot (LSN) order
* Single Copy Delivery (SCD) optimization achieves 1X read amplification

release
pointer

Slots (LSN)

1

2

3

4

5

>

N1

R1

N2

R1

R4

N3

R1

R5

N4

R2

R4

R5

N5

R2

N6

R2

R4

N7

R3

N8

R3

R5

N9

R3

Storage
Acceptors

committed
(released)
records

release
pointer

Slots (LSN)

1

2

3

4

5

>

N1

R1

R1

N7

R3

N8

R3

R5

N2 N3 N4 N5 N6
R1 R1
R2 R2 R2
R4 R4 R4
R5 R5
R4 R5
R2
. - - 000000000 ~
[Stream Merge
R1| |R2| |R3| | R4| |R5
1 2 3 4 5

I
I
I
I
I
I
I
I
\

——— —— —

Storage

i Acceptors

R3 committed
(released)
records

record
streams
(acceptor to
reader)

(Gray Rn denotes record
filtered out by SCD
optimization)

reader

Log Segments and configuration management

* A Login LogDevice -> A sequence of log segments indexed by monotonically
increasing epoch

* each segment has its fixed configuration: idea inspired by Stoppable Paxos [5]

* Reconfiguration can happen out-of-band of replication via an auxiliary metadata
store

» epoch store: stores log segment configuration. back by Zeus (Zookeeper).
* auxiliary metadata store inspired by Vertical Paxos [3]

e Starting a new log segment when:
* Leader (sequencer) fail-over
* reconfiguring replication property and storage acceptor membership

* Similar design also adopted by Delos [4]

Log Segments

epoch

1

epoch

epoch

epoch

7
(latest)

bridge
record
elnl eln2 eln7 eln8
bridge
record
e2nle2n2 . e2nl18 e2n19
bridge
record
e3nl
current
log tail

g

e7/nl e7Zn2 ...

configuration of a log epoch segment

epoch:1 | SEQ: NO | [(region, 2), (node, 3)] | { N1, N2, N3, N4, N5 }
—— — \ ~ J ~ Y,

epoch sequencer replication property storage node set
(leader) (acceptors)

epoch transition: Sealing and Bridge record

e Starting a new log segment requires first “Sealing” the previous log
segment.
* A procedure similar to executing Phase 1 Paxos on a leader election quorum of the

previous segment
* Once sealing is done, no append request can be successfully ACKed to the sealed log

epoch segment

» After Sealing, an epoch recovery procedure is performed to:
* learn the last appended record slot in the sealed epoch segment
* place a bridge record immediately after the last record, marking the end of the log

segment
* once bridge record is place the log epoch segment becomes immutable (until

trimmed)

Animation: Leader (sequencer) failure
scenario

0. Sequencer in epoch 1 in steady state replication
current

released

current
log tail

l
=)~ PeARI0000-

elnl eln2 ... eln7 ... elnl2

1. Sequencer in epoch 1 failed / partitioned

current
released

dirty slots current
log tail

l
%)) 4)4) 4 44 -

elnl eln2 ... eln7 ... elnl2

2. A new sequencer got elected by failure detector

current
released
l dirty slots current
' log tail
MNe epoch /
X
elnleln2 ... eln7 ... elnl2

sequencer

3. The new sequencer got its epoch and configuration

from the epoch store r‘::;;ig;
l dirty slots current
log tail
X Addddi00000-
X
elnl eln2 ... eln7 ... elnl2

sequencer
epoch 2

4. The new sequencer perform Paxos Phase | to SEAL
the Phase 1 (leader election) quorum of storage node
set for epoch 1, preventing it from completing new

current
released

dirty slots

S HHMHHHM

elnl eln2 ... eln?7

sequencer
epoch 2

epoch 1
tail
SEALED)

Seal Zoom in:

Sequencer in epoch 2 Seals phase 1 quorum of the configuration
of the previous epoch segment (epoch). 2 (epoch) is used as the
proposal/ballot number.

epoch: 1 | SEQ: NO | [(region, 2), (node, 3)] | { N1, N2, N3, N4, N5, N6, N7, N8, N9, N10 }

N9 N10

sequencer

epoch 2

epoch: 2 | SEQ: N20 | [(region, 2), (node, 3)] | { N4, N5, N6, N7, N8, N9, N10, N11 }

4. The sequencer in epoch 2 can start taking new

appends, but won’t release these records despite ,‘;‘,‘;;22;
fully replicated. l dirty slots
. -_ epoch
4
elnl eln2 ... eln7 ... elnl2

current
log tail

epoch /

e2nl e2n2

sequencer
epoch 2

epoch 1
tail
SEALED)

5. At the same time, sequencer in epoch 2, with potential
other successors, keep running FPaxos (Phase | and Il) to

reach consensus on each slot of epoch 1 in the dirty range, current
and finally placing a bridge record to mark the end of epoch 1 released h1
. epoc
also using FPaxos. l slots reached consensus tail
SEALED)
epoch
1
elnl eln2 ... eln7 ... elnl2elnl3
hole hole bridge
plug* plug record
current
log tail
epoch /
sequencer
epoch 2 2
e2nl e2n2

* hole plug is inserted for the LSN slots that are were
NOT ACKed originally, indicating a benign (non-dataloss)
gap in the LSN sequence.

6. The sequencer in epoch 2 can finally release all
records up to the fully replicated prefix of epoch 2.

) = WinaddiA

epoch 1
tail
SEALED)

A

elnleln2 ... eln7 ... elnl2elnl3
bridge
current record
log tail
epoch /
sequencer
epoch 2 2
e2nl e2n2
current

released

/ero-move, out-of-band reconfiguration

* No data movement with reconfiguration
* start a new log segment only requires a transaction in metadata store

* Out-of-band reconfiguration benefits:
* Allowing different requirements and design choices in data plane vs. metadata plane
* trade-off on durability, availability, throughput, ...
* Higher availability in reconfiguration

» Scenario: steady state log replication is stuck (e.g., guorum loss)
* In-band: cannot reconfigure, require manual intervention!
* Qut-of-band: reconfiguration by starting a new log segment with a new health acceptor membership

* Low reconfiguration latency

* Reconfiguration latency: TX in metadata store + Sealing the previous segment.
* No joint consensus. No intermediary transition. Not blocked by data replication.

Highlights

» Superior steady state replication performance
* Smart placement for laaS compliant failure modelling

* Only requires f+1 copies for tolerating f failures
* 40% less space compared with raft when f=2

* Low latency, Zero-move reconfiguration
* Log capacity and throughput not bounded by a single node
* High write availability from out-of-band reconfiguration

Takeaways

* Log is THE abstraction for modeling multi-paxos

* LogDevice is a managed service with strong consistency of multi-
paxos and highly performant and efficient with flexible quorums

* Designed to be a reliable, scalable and flexible service

LogDevice: Paxos at Facebook Scale

* LogDevice powering Scribe use case:
https://engineering.fb.com/data-infrastructure/scribe/
* “the total size of these logs is several petabytes every hour.”
e 2.5 TB/s writes; 7 TB/s reads globally

https://engineering.fb.com/data-infrastructure/scribe/

References

e [1] Paxos Made Simple. Leslie Lamport. 2001

 [2] Flexible Paxos: Quorum intersection revisited. Heidi Howard, Dahlia
Malkhi, Alexander Spiegelman. 2016

* [3] Vertical Paxos and Primary-Backup Replication. Leslie Lamport, Dahlia
Malkhi, and Lidong Zhou. 2009

* [4] Delos: Simple, flexible control plane storage. Mahesh Balakrishnan and
Jason Flinn. 2019

 [5] Stoppable Paxos. Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2008

* [6] Gossip-Style Failure Detection and Distributed Consensus for Scalable
Heterogeneous Clusters. Sridharan Ranganathan, et al. 2001

https://engineering.fb.com/data-center-engineering/delos/

Appendix

Leader election and APPEND routing

* Leader election is a plug-in in Multi-Paxos context

* Gossip-based failure detector [6]
 cluster nodes exchange gossips periodically (e.g., every 100ms)
* nodes maintain local cluster state; clients poll cluster state from server;

* placement and routing: weighted consistent hashing
* input: logid, sequencer configuration (map of node -> weights), cluster state
e output: sequencer node id for the log

* “Soft consensus”
* best effort for local views to converge quickly (i.e., 1-3 seconds)

* failing to achieve that won’t affect correctness, but may affect liveness (i.e.,
availability / latency)

* seguencer ping-pong issue

writer application

logdevice
client lib

epoch store
(ballot, config)

activation

A

3

epoch +
replication
configuration

r

APPEND

v

A

APPENDED

&

sequencer
(proposer)

STORE

storage nodes
(acceptors)

v

STORED

AN

RECORD stream

—

reader application

logdevice
client lib

