
LogDevice: the Consensus Story

Xi Xiong, LogDevice SWE

LogDevice

• Log data model built on a strongly consistent Paxos consensus engine
• Carefully chosen variants of Paxos to achieve:
• fault tolerance with fewer copies
• flexible quorums for highly available, high throughput and low latency steady

state replication
• zero-copy quorum reconfiguration with high availability

Log abstraction

Log data model

31 32LSN

writer append

33 34 35 36 37 38 39 40 41 42 43 44 46 4745 48

reader stream reader stream

trim

• RPC: thrift, etc…
• require strongest inter-service dependencies (availability, rpc format, etc)

• Log as communication primitive
• supports fan-out and streaming subscription
• messages durably replicated and persisted as ordered log records
• messages can be independently replayed again and again by consumers
• minimal inter-service dependencies

• consumers can be down for hours or days, can still catch up once up via backfills
• load isolation: consumer won’t overwhelm producer service
• easier to handle data format changes

Log is the abstraction for reliable
communication

Log is the abstraction for distributed state
replication and distribution

Let's talk Paxos

Concepts & Roles

• Proposers: propose value to be chosen
• value proposed usually on behalf of clients

• Acceptors: agrees and persists decided values
• Learner: a process wish to learn the chosen value

Proposer

Acceptors

received
client

request

Goal: Agree on value "v" for a slot

Proposer

Acceptors

Phase 1(a)
Prepare

pick
proposal
number n

Goal: Agree on value "v" for a slot

Proposer

Acceptors

Phase 1(a)
Prepare

pick
proposal
number n

PREPARE(n)

Goal: Agree on value "v" for a slot

Proposer

Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

wait for majority

pick
proposal
number n

PREPARE(n)

PROMISE(n’,v’)

Goal: Agree on value "v" for a slot

Proposer

Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

wait for majority
select
value v

pick
proposal
number n

PREPARE(n)

v: v’ with largest n’ in PROMISEs
received or (in case no v’ received)

client picked value

Goal: Agree on value "v" for a slot

PROMISE(n’,v’)

Proposer

Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

Phase 2(a)
Propose

wait for majority
select
value v

pick
proposal
number n

PREPARE(n) PROPOSE(n,v)

Goal: Agree on value "v" for a slot

PROMISE(n’,v’)

Proposer

Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

Phase 2(a)
Propose

Phase 2(b)
Accepted

wait for majority wait for majority
value v
chosen

select
value v

pick
proposal
number n

PREPARE(n) PROPOSE(n,v)

ACCEPT(n)

Goal: Agree on value "v" for a slot

PROMISE(n’,v’)

Intersection!

Proposer

Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

Phase 2(a)
Propose

Phase 2(b)
Accepted

wait for majority wait for majority

Phase 3
Commit

(optional)

value v
chosen

select
value v

pick
proposal
number n

PREPARE(n) PROPOSE(n,v)

ACCEPT(n)

COMMIT(n)

Goal: Agree on value "v" for a slot

PROMISE(n’,v’)

Intersection!

Flexible Paxos

• Single decree Paxos [1] restriction: Phase 1 and 2 must use a majority
quorum of servers and that any two quorums must intersect

• Flexible Paxos [2]: not all quorums need to intersect. Only need that
any Phase 1 quorum and any Phase 2 quorum must intersect.

Proposer

Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

Phase 2(a)
Propose

Phase 2(b)
Accepted

wait for
Phase I quorum

Phase 3
Commit

(optional)

value v
chosen

select
value v

pick proposal
number n

PREPARE(n)

PROMISE(n’,v’)

PROPOSE(n,v)

ACCEPT(n)

COMMIT(n)

wait for
Phase II quorum

8 out of 10 3 out of 10

Proposer

Acceptors

Phase 1(a)
Prepare

Phase 1(b)
Promise

Phase 2(a)
Propose

Phase 2(b)
Accepted

wait for
Phase I quorum

Phase 3
Commit

(optional)

value v
chosen

select
value v

pick proposal
number n

PREPARE(n)

PROMISE(n’,v’)

PROPOSE(n,v)

ACCEPT(n)

COMMIT(n)

wait for
Phase II quorum

Intersection!

8 out of 10 3 out of 10

From Single-Decree Paxos to Multi-Paxos

What is Multi-Paxos

• Scaling Paxos from single value to a growing chain of single-value
consensus slots
• Practically, we need consensus on multiple values in distributed systems
• High throughput/Low latency – one phase 1 (leader election) + multiple phase

2 (replication)
• directly maps to log abstraction: append-only, immutable after consensus

Log is THE abstraction for multi-Paxos

31 32LSN

writer append

33 34 35 36 37 38 39 40 41 42 43 44 46 4745 48

reader stream reader stream

trim
Reaching consensus on a newly

allocated slot

Learn the established consensus
of existing slots

Multi-Paxos + Flexible Quorums is a game
changer
• Highly performant steady state via larger acceptor membership and

smaller replication quorums
• Higher Throughput: pipelined Phase 2 replication with small quorums (e.g., 3

out of 20)
• Lower Latency: leader picks best 3 out of 20
• Higher write availability: with larger acceptor membership, leader can keep

writing as long as any 3/20 acceptors are up

• Leader election – less common
• Phase 1 – Leader election with larger quorum (e.g., 18 out of 20) only during

leader failover

Proposer A

Acceptors

Phase 1
Leader election

Proposer A
elected

Proposer A
phase 1

slot 2
(phase 2)

Proposer B

Phase 1
Leader election

Proposer B
elected

Proposer B
phase 1

Phase 2
Replication

Steady state

slot 1
(phase 2)

Question: with a larger Phase 1 quorum (e.g.,
18 out of 20) , is it more difficult (i.e., less
available) to elect a leader?

Failure domain aware Placement

• Goal: Improving availability and fault tolerance for Phase 1 (leader
election)

• Solution: Failure domain aware placement
• Reducing size requirement of Phase 1 quorum by enforcing topology

constrains on Phase 2 quorums during replication
• result: Phase 1 quorum require much smaller number of acceptors during

correlated failures

Flexible Quorums example: Grid Quorums

Neither Phase 1 nor Phase 2 quorum need simple majority!
à Significantly reduced minimal number of acceptors required: floor(M*N/2)+1 -> M+N-1
à Higher availability and better latency.
à Better data availability and durability in correlated failures

(a) Basic Paxos:
Phase 1 and 2 quorum: simple

majority

(b) Flexible Paxos:
Phase 1 quorum: one full Availability Zone (AZ)

Phase 2 quorum: a node in each AZ

az1

az2

az3

az4

Oregon N. Carolina Texas

az2 az3

root

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

az1 az5 az6az4 az8 az9az7

N11 N12 N13 N14 N15 N16 N17 N18

region

availability
zone

node

nodeset size: 18
replication property: (region,2)(az,3)(node,4)

replication quorum (copyset):
leader election quorum
(f-majority):

root

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18

region

node

failure scenario 1: loss of one entire region

az2 az3az1 az5 az6az4 az8 az9az7 availability
zone

nodeset size: 18
replication property: (region,2)(az,3)(node,4)

replication quorum (copyset):
leader election quorum
(f-majority):

Oregon N. Carolina Texas

root

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18

region

node

failure scenario 2: loss of 2 entire AZs

az2 az3az1 az5 az6az4 az8 az9az7 availability
zone

nodeset size: 18
replication property: (region,2)(az,3)(node,4)

replication quorum (copyset):
leader election quorum
(f-majority):

Oregon N. Carolina Texas

root

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18

region

node

failure scenario 3: loss of any 3 nodes

az2 az3az1 az5 az6az4 az8 az9az7 availability
zone

nodeset size: 18
replication property: (region,2)(az,3)(node,4)

replication quorum (copyset):
leader election quorum
(f-majority):

Oregon N. Carolina Texas

Storing and learning consensus results

• Consensus log records are stored among acceptors in a data striping fashion
• storage acceptors do not store the full copy of the log
• flexible Paxos enables disjoint small replication quorums over large acceptor membership -

perfect for striping

• Advantages:
• Only f+1 record copies are needed for tolerating f acceptor failures
• Log throughput and capacity not bounded by a single storage acceptor

• Learning the result of consensus: reading the log via streaming
• Acceptors stream their local copy of committed records
• Client reader merges all acceptor record streams using slot (LSN) order
• Single Copy Delivery (SCD) optimization achieves 1X read amplification

Storage
AcceptorsN1 N2

Slots (LSN)

1

2

3 committed
(released)

records

R1

4

5

N3 N4 N5 N6 N7 N8 N9

R1 R1

R2 R2 R2

R3 R3 R3

R4 R4 R4

R5 R5 R5

6

release
pointer

…

Storage
AcceptorsN1 N2

Slots (LSN)

1

2

3 committed
(released)

records

R1

4

5

N3 N4 N5 N6 N7 N8 N9

R1 R1

R2 R2 R2

R3 R3 R3

R4 R4 R4

R5 R5 R5

reader

6

release
pointer

1 2 3 4 5

…

R1 R2 R3 R4 R5

Stream Merge

record
streams

(acceptor to
reader)

R1 R1 R1
R4 R5 R4

R2 R2
R4
R2

R5
R3R3 R3

R5

…

(Gray Rn denotes record
filtered out by SCD

optimization)

Log Segments and configuration management

• A Log in LogDevice -> A sequence of log segments indexed by monotonically
increasing epoch
• each segment has its fixed configuration: idea inspired by Stoppable Paxos [5]

• Reconfiguration can happen out-of-band of replication via an auxiliary metadata
store
• epoch store: stores log segment configuration. back by Zeus (Zookeeper).
• auxiliary metadata store inspired by Vertical Paxos [3]

• Starting a new log segment when:
• Leader (sequencer) fail-over
• reconfiguring replication property and storage acceptor membership

• Similar design also adopted by Delos [4]

epoch
1

e1n1 e1n2 …… e1n8e1n7

epoch
2

e2n1 e2n2 e2n19e2n18……

epoch
3

e3n1

……

epoch
7

(latest)
e7n1 e7n2

current
log tail

bridge
record

bridge
record

bridge
record

……

Log Segments

configuration of a log epoch segment

epoch: 1 | SEQ: N0 | [(region, 2), (node, 3)] | { N1, N2, N3, N4, N5 }

replication property storage node set
(acceptors)

sequencer
(leader)

epoch

epoch transition: Sealing and Bridge record

• Starting a new log segment requires first “Sealing” the previous log
segment.
• A procedure similar to executing Phase 1 Paxos on a leader election quorum of the

previous segment
• Once sealing is done, no append request can be successfully ACKed to the sealed log

epoch segment

• After Sealing, an epoch recovery procedure is performed to:
• learn the last appended record slot in the sealed epoch segment
• place a bridge record immediately after the last record, marking the end of the log

segment
• once bridge record is place the log epoch segment becomes immutable (until

trimmed)

Animation: Leader (sequencer) failure
scenario

epoch
1

e1n1 e1n2 …… e1n7

current
log tail

……

current
released

sequencer
epoch 1

e1n12

0. Sequencer in epoch 1 in steady state replication

epoch
1

e1n1 e1n2 …… e1n7

current
log tail

……

current
released

sequencer
epoch 1

e1n12

dirty slots

1. Sequencer in epoch 1 failed / partitioned

epoch
1

e1n1 e1n2 …… e1n7

current
log tail

……

current
released

sequencer
epoch 1

sequencer

e1n12

dirty slots

2. A new sequencer got elected by failure detector

epoch
1

e1n1 e1n2 …… e1n7

current
log tail

……

current
released

sequencer
epoch 1

e1n12

dirty slots

3. The new sequencer got its epoch and configuration
from the epoch store

epoch
store

sequencer
epoch 2

epoch
1

e1n1 e1n2 …… e1n7

epoch 1
tail

(SEALED)

……

current
released

sequencer
epoch 1

e1n12

dirty slots

4. The new sequencer perform Paxos Phase I to SEAL
the Phase 1 (leader election) quorum of storage node
set for epoch 1, preventing it from completing new
appends

epoch
store

sequencer
epoch 2

Seal Zoom in:
Sequencer in epoch 2 Seals phase 1 quorum of the configuration
of the previous epoch segment (epoch). 2 (epoch) is used as the
proposal/ballot number.

sequencer
epoch 1

epoch
store

sequencer
epoch 2

epoch: 1 | SEQ: N0 | [(region, 2), (node, 3)] | { N1, N2, N3, N4, N5, N6, N7, N8, N9, N10 }

epoch: 2 | SEQ: N20 | [(region, 2), (node, 3)] | { N4, N5, N6, N7, N8, N9, N10, N11 }

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

epoch
1

e1n1 e1n2 …… e1n7

current
log tail

……

current
released

sequencer
epoch 1

e1n12

dirty slots

4. The sequencer in epoch 2 can start taking new
appends, but won’t release these records despite
fully replicated.

epoch
store

sequencer
epoch 2

epoch
2

e2n1 e2n2

epoch 1
tail

(SEALED)

epoch
1

e1n1 e1n2 …… e1n7

current
log tail

……

current
released

sequencer
epoch 1

e1n12

5. At the same time, sequencer in epoch 2, with potential
other successors, keep running FPaxos (Phase I and II) to
reach consensus on each slot of epoch 1 in the dirty range,
and finally placing a bridge record to mark the end of epoch 1
also using FPaxos.

epoch
store

sequencer
epoch 2

epoch
2

e2n1 e2n2

epoch 1
tail

(SEALED)

e1n13
bridge
record

slots reached consensus

hole
plug*

hole
plug

* hole plug is inserted for the LSN slots that are were
NOT ACKed originally, indicating a benign (non-dataloss)
gap in the LSN sequence.

epoch
1

e1n1 e1n2 …… e1n7

current
log tail

……

current
released

sequencer
epoch 1

e1n12

epoch
store

sequencer
epoch 2

epoch
2

e2n1 e2n2

epoch 1
tail

(SEALED)

e1n13

6. The sequencer in epoch 2 can finally release all
records up to the fully replicated prefix of epoch 2.

bridge
record

Zero-move, out-of-band reconfiguration

• No data movement with reconfiguration
• start a new log segment only requires a transaction in metadata store

• Out-of-band reconfiguration benefits:
• Allowing different requirements and design choices in data plane vs. metadata plane

• trade-off on durability, availability, throughput, …
• Higher availability in reconfiguration

• Scenario: steady state log replication is stuck (e.g., quorum loss)
• In-band: cannot reconfigure, require manual intervention!
• Out-of-band: reconfiguration by starting a new log segment with a new health acceptor membership

• Low reconfiguration latency
• Reconfiguration latency: TX in metadata store + Sealing the previous segment.
• No joint consensus. No intermediary transition. Not blocked by data replication.

Highlights

• Superior steady state replication performance
• Smart placement for IaaS compliant failure modelling
• Only requires f+1 copies for tolerating f failures
• 40% less space compared with raft when f = 2

• Low latency, Zero-move reconfiguration
• Log capacity and throughput not bounded by a single node
• High write availability from out-of-band reconfiguration

Takeaways

• Log is THE abstraction for modeling multi-paxos
• LogDevice is a managed service with strong consistency of multi-

paxos and highly performant and efficient with flexible quorums
• Designed to be a reliable, scalable and flexible service

LogDevice: Paxos at Facebook Scale

• LogDevice powering Scribe use case:
https://engineering.fb.com/data-infrastructure/scribe/
• “the total size of these logs is several petabytes every hour.”
• 2.5 TB/s writes; 7 TB/s reads globally

https://engineering.fb.com/data-infrastructure/scribe/

References

• [1] Paxos Made Simple. Leslie Lamport. 2001
• [2] Flexible Paxos: Quorum intersection revisited. Heidi Howard, Dahlia

Malkhi, Alexander Spiegelman. 2016
• [3] Vertical Paxos and Primary-Backup Replication. Leslie Lamport, Dahlia

Malkhi, and Lidong Zhou. 2009
• [4] Delos: Simple, flexible control plane storage. Mahesh Balakrishnan and

Jason Flinn. 2019
• [5] Stoppable Paxos. Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2008
• [6] Gossip-Style Failure Detection and Distributed Consensus for Scalable

Heterogeneous Clusters. Sridharan Ranganathan, et al. 2001

https://engineering.fb.com/data-center-engineering/delos/

Appendix

Leader election and APPEND routing

• Leader election is a plug-in in Multi-Paxos context
• Gossip-based failure detector [6]

• cluster nodes exchange gossips periodically (e.g., every 100ms)
• nodes maintain local cluster state; clients poll cluster state from server;

• placement and routing: weighted consistent hashing
• input: logid, sequencer configuration (map of node -> weights), cluster state
• output: sequencer node id for the log

• “Soft consensus”
• best effort for local views to converge quickly (i.e., 1-3 seconds)
• failing to achieve that won’t affect correctness, but may affect liveness (i.e.,

availability / latency)
• sequencer ping-pong issue

N1

sequencer
(proposer)

writer application

logdevice
client lib

activation

storage nodes
(acceptors)

N2

N3

N4

N5

…

APPENDED

…

…

epoch store
(ballot, config)

reader application

logdevice
client lib

epoch +
replication

configuration

APPEND
RECORD stream

STORED

…

STORE

